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Abstract In this work, the behaviour of a gas bubble in a low-Mach-number, weakly viscous, dielectric liquid
under the action of a spatially uniform electric field is considered. Using domain perturbation analysis and assum-
ing any shape deformation of the bubble or induced translation to be small, but placing no such restriction on the
volume oscillations, appropriate equations to second order in the small-interaction terms are derived. Steady and
time-dependent solutions are presented. The results indicate that only even shape modes and odd components of
the interfacial charge density are excited starting from an initially stationary and uncharged spherical bubble. In
order for the bubble to be set into motion it must either be initially deformed in terms of an odd shape mode or
acquire an even charge density component. Situations are examined wherein all modes are excited and the presence
of an instability that arises due to a coupling between an even mode of the charge density and bubble translation
is demonstrated. The instability manifests itself via the sudden acceleration of the bubble and growth of its radius;
this leads ultimately to conditions beyond the reach of the present theory.

Keywords Bubble dynamics · Electric field · Fluid mechanics · Sonoluminescence

1 Introduction

Electric fields can be used to control the dynamics of bubbles such that a variety of processes can be improved.
These include nucleate boiling, wherein application of an electric field causes bubbles to translate or to break up,
leading to enhanced boiling heat transfer (e.g., [1]), and the growth and detachment of bubbles at an orifice [2].
In the context of sonoluminescence, Spelt and Matar [3] showed theoretically that more violent collapse could
be achieved by subjecting freely suspended bubbles to an electric field, which would naturally also be of interest
in other areas such as electrochemistry, ultrasonic imaging, drug delivery, surface cleaning, sonochemistry and in
both nuclear and marine technologies. A complication, however, is that this improved collapse is accompanied by
a growth of the ellipsoidal shape mode of the bubble, which becomes more pronounced as minimum volume is
approached. Clearly, this concurrent increase in shape deformation (which would also be expected to trigger other
shape modes) could have a detrimental impact on the bubble collapse, and hence the determination of favourable
conditions under which the use of electric fields could enhance sonoluminescence.
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Previous theoretical studies on the dynamics of a bubble in an electric field have utilized either an approach that
is fully linear in volume and shape deviations (e.g., [4], where the degree to which the natural frequency values of
shape modes are modified by electric fields is determined), or an approach that accounts for shape modes only in a
linear manner but that allows for bubbles to collapse violently; Oh et al. [5], for instance, investigated the occurrence
of chaotic volume and shape oscillations; see further the study by Spelt and Matar [3] discussed above. In the two
latter studies, for the case of a spatially uniform electric field, only the effect on the volume and a single shape
mode was accounted for. Approaches that allow for nonlinear coupling between shape modes have been developed
extensively for droplets in an electric field (see for example [6–18]), but appear not yet to have been applied directly
to bubbles, and it remains unclear which and how bubble shape modes interact in an electric field. To our knowledge,
an analysis that is nonlinear in shape-mode amplitudes and allows for the collapse of a bubble has also not been
attempted previously.

An important difference between drops and bubbles is that in the latter case volume conservation is not imposed.
Indeed, the contents of the bubble are assumed to be compressible. This impacts not only on the volume oscillations
of the bubble but also both the translation and shape deformation through nonlinear interaction. A second difference
is that the gaseous contents of the bubble have a much smaller permittivity than the content of drops—the dielectric
constant for water at room temperature is 80 times larger than the corresponding value for air. In turn this causes a
liquid drop to undergo more elongation in an electric field than a gas bubble for the same strength of electric field
(see, for example, [19]).

In light of the above observations we derive here a theoretical model of the dynamics of a bubble in an electric
field, allowing for violent collapse, translation and shape deformations. Firstly, we represent any shape defor-
mation by an infinite sum of Legendre polynomials, obtaining suitable evolution equations for the amplitudes
of the respective Legendre polynomials through the application of perturbation analysis with respect to the bub-
ble surface boundary conditions. The analysis is conducted to second order in the small shape-mode amplitudes.
We determine clearly the conditions under which the higher modes become excited. The resulting model is a
system of nonlinear, coupled ordinary differential equations that can be integrated numerically in an efficient
manner for a large range of cases. In principle, the model can be extended to model the detailed dynamics of
several bubbles in an electric field, but this is beyond the scope of this paper. We conclude the paper by dem-
onstrating the impact of the shape and charge density modes on the collapse, translation and deformation of the
bubble.

2 Problem formulation

2.1 Governing equations

A gas bubble of relative permittivity εin and conductivity κin is subjected to a spatially uniform electric field E0 (its
value may depend on time, but this notation is suppressed here) in a liquid of relative permittivity ε and conductivity
κ; the subscript ‘in’ is used to designate quantities associated with the bubble contents. The electric fields, E and
Ein, are assumed to be irrotational and solenoidal, thus (E,Ein) = (∇ψ(x, t),∇ψin(x, t)) and satisfy the following
equations

∇2ψ = 0 and ∇2ψin = 0, (1)

whereψ ,ψin denote the respective electric potentials; the position vector x is measured relative to the bubble centre,
t represents time and S corresponds to the interface between the gas and liquid phases.

The electrostatic interfacial boundary conditions are the continuity of the tangential component of the electric
field displacement vector, the jump condition for the normal component of the electric field displacement vector
and the unsteady balance of free charge at the interface which are given respectively by [3,20]

ψ = ψin on S, (2)
[
εn̂ · ∇ψ − εinn̂ · ∇ψin

]
S = q/ε0, (3)
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[−κn̂ · ∇ψ + κinn̂ · ∇ψin
]

S = dq

dt
+ ∇S · (qu), (4)

where n̂ is the unit normal vector at the bubble surface pointing into the liquid, q is the interfacial charge density and
u the liquid velocity; ε0 and ε are the permittivity of free space and the dielectric constant of the liquid phase. The
surface gradient operator ∇S = ∇ − n̂(n̂ · ∇), while we define the velocity in the normal direction as un = n̂(n̂ · u).
Since

∇S · (qu) = ∇S · (quS)+ q(∇S · n̂)(u · n̂) = ∇S · (quS)+ q(∇ · n̂)(u · n̂), (5)

where uS = u − un , these terms are exactly those presented by Belonozhko and Grigor’ev [21]. It is also straight-
forward to show that these terms are consistent with the pertinent terms presented by Saville [20].

Close scrutiny of the analysis in [20–22] reveals that they all are in a frame of reference moving with velocity
un , i.e., moving in a frame of reference with the interface. This is not so in our work. We define our problem relative
to a frame of reference moving with the velocity of the bubble, redefining the velocity field accordingly. A further
modification to the interfacial charge-density boundary condition is required, however. Although the charge density
q is only defined at the interface, as we Fourier decompose it (this will be done below), the resultant expression is
an analytical continuation in the radial direction with ∂q/∂r = 0. Therefore, the time derivative in (4) is evaluated
as follows [23,24]
dq

dt
= ∂q

∂t
+ un · ∇q = ∂q

∂t
+ un · êθ

∂q

∂θ
, (6)

where êθ is the unit normal vector in the θ -direction. As a result, Eq. 4 becomes

∂q

∂t
+ un · êθ

∂q

∂θ
+ ∇S · (quS)+ q(∇ · n̂)(u · n̂) = [−κn̂ · ∇ψ + κinn̂ · ∇ψin

]
S . (7)

We also impose the kinematic boundary condition at the bubble surface,

DS

Dt
= ∂S

∂t
+ u · ∇S = 0, (8)

as well as the following conditions on the normal and tangential components of the total stress, respectively:
[
n̂ · T · n̂

]S+
S− = σ∇ · n̂, (9)

[
n̂ · T · t̂

]S+

S− = 0, (10)

where σ is the surface tension, t̂ is the unit tangent vector at the bubble surface, T is the total stress tensor given by

T = T f + M, (11)

in which T f and M correspond to the stress in the fluid phases and the Maxwell stress tensor, respectively, where

M = ε ε0

(
EE − 1

2
E2I

)
; (12)

here, I is the identity tensor. The viscous contribution to the tangential stress condition (10), which is important for
charged droplets, is ignored here. Hence we assume the flow in the liquid phase to be irrotational so that the liquid
velocity is given by u = ∇φ where φ is a potential function; we account for viscous corrections by employing a
boundary-layer approach as discussed further below.

2.2 Domain perturbations

We use a spherical polar coordinate system (r, θ,�) relative to the bubble centre to model the bubble dynamics.
Restricting attention to small, axisymmetric deformation, we may give the bubble surface S by

S(r, µ, t) = r − R(t)− ε

∞∑

k=2

ak(t)Pk(µ) = 0, (13)

123



294 S. J. Shaw et al.

where R(t) represents the spherical oscillations of the bubble, µ = cos θ and Pk(µ) is a Legendre polynomial
of degree k, with corresponding scaled amplitude ak(t). The amplitudes have been scaled by a small dimen-
sionless parameter ε (a representative value of the maximum ratio of the shape amplitudes and R) in order to
facilitate the subsequent presentation; an exact definition of ε is not needed, the final model equations are in terms
of εak . Suitable evolution equations for the volume oscillations R(t) and shape-mode amplitudes εak(t), k ∈
[2,∞), are obtained by applying perturbation analysis with respect to the bubble-surface boundary conditions. We
employ domain perturbation analysis obtaining corrections to O(ε2) in a manner similar to the pertubation work of
Doinikov [25]. We note that many perturbation studies with respect to nonlinear bubble dynamics use multiple-scale
analysis where the shape-mode amplitudes are assumed to scale as εnan(t), n ∈ [2,∞). Here we wish to determine
all permissible interactions of the form ai (t)a j (t), i, j ∈ [2,∞), in order to determine how energy is transferred
between the shape modes when a bubble is being forced by an electric field.

Following Spelt and Matar [3], the electric potentials both inside the bubble and in the liquid are also assumed
to be axisymmetric having the form

ψ(r, µ, t) =
(

E0 + A(t)R(t)3

r3

)
r P1(µ)+ ε

∞∑

k=2

Ak(t)

rk+1 Pk(µ), (14)

ψin(r, µ, t) = B(t)r P1(µ)+ ε

∞∑

k=2

Bk(t)r
k Pk(µ). (15)

Here E0 is the magnitude of the applied electric field, while the coefficients A(t), Ak(t), B(t), Bk(t) (k ∈ [2,∞))
are determined by applying the electrostatic interfacial boundary conditions, given by Eqs. 2 and 3. The interfacial
charge density is given by

q(µ, t) = q̂(t)P1(µ)+ ε

∞∑

k=2

q̂k(t)Pk(µ), (16)

where the coefficients q̂(t) and q̂k(t) are again determined from the bubble-surface boundary conditions.
At low Mach numbers, the liquid velocity potential is [3,26,27]

φ(r, µ, t) = G(t)+ D0(t)

r
+ ε

∞∑

k=1

Dk(t)

rk+1 Pk(µ), (17)

where G(t) = φ∞ + ρ
c∞

d
dt
(R2 Ṙ), in which φ∞ is the liquid velocity potential and c∞ is the speed of sound in the

liquid in the absence of the bubble, and ρ the density of the liquid. The overdot notation indicates differentiation
with respect to time. Note that a term has been added to (17), i.e., the k = 1 case, relative to the equation presented
by Spelt and Matar [3] in order to account for situations involving bubble translation. The addition of low-Mach-
number compressibility effects to the model permits the more accurate study of violent bubble collapse. As the
motion of the bubble wall increases significantly, due to compressibility effects, some of the energy associated
with the volume oscillations is converted into acoustic emissions. This is most likely to occur around the bubble
minimum volume. Accounting for this damping mechanism results in a reduction in the amplitude of the volume
oscillations together with an increase in their frequency. In turn, through nonlinear interaction, this will modify all
the other modes. Observable differences in the volume oscillations, though, are only seen for very violent collapse;
see, for example, Fig. 6.

The coefficients Dk(t), k ∈ [0,∞) are determined by applying the kinematic boundary condition.
In terms of a spherical polar coordinate system whose origin is at the bubble centre, the kinematic boundary

condition at S, Eq. 8, has the form

DS

Dt
= ∂S

∂t
− εu3(t)(cos θ,− sin θ, 0) · ∇S + ∇φ · ∇S = 0, (18)

where we have assumed the bubble to be moving with speed εu3(t) along the axis of symmetry of the problem,
which is taken to lie along the z-axis in a stationary Cartesian coordinate system. We omit the resultant expressions
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for the Dk(t) coefficients (which may be found in the work of Doinikov [25]). Also, to aid presentation, we now
omit explicit dependence on t .

We turn our attention now to the normal-stress balance at the interface. Substitution of the appropriate expression
for T f in (9) yields

pg = −ρ ∂φ
∂t

+ ρεu3 (cos θ,− sin θ, 0) · ∇φ − 1

2
ρ |∇φ|2 + σ∇ · n̂ +�− [

n̂ · M · n̂
]S+

S− , (19)

where pg is the pressure of the gas within the bubble and� represents the viscous contributions. In order to account
for the viscous damping of the shape-mode oscillations, several different approaches have been employed. Kang

and Lee [28] and Oh et al. [5] add the viscous normal stress term −2µ̂ ∂
2φ

∂n2 (where µ̂ denotes dynamic viscosity)
and a pressure correction pv to the normal-stress balance boundary condition. However, in order to determine the
pressure correction, the full Navier–Stokes equations have to be considered [28].

Prosperetti [29] developed another approach to deal with the inclusion of viscous effects by also accounting
for vorticity in the liquid: an integro-differential equation was derived for the general shape-mode amplitude (the
integral part is a convolution integral with respect to the vorticity) together with a partial differential equation for the
vorticity. This system reduces to an ordinary differential equation in the shape-mode amplitude only, if the effects
of vorticity can be confined to a vanishingly thin layer adjacent to the bubble interface [30]. The viscous terms
contained within the later set of ordinary differential equations are the appropriate shape-mode viscous-damping
terms for irrotational flow. However, to permit the study of violent bubble collapse with application to the phenom-
enon of sonoluminescence, we instead employ the approach of Brenner et al. [31]. Though they also work under
the constraint of potential flow, they accounted for vorticity by assuming the layer in which it is confined has a
finite, but thin, thickness, i.e., the absolute limit of [30] is not applied. Under this assumption modified shape-mode
viscous contributions were obtained. The thickness of the assumed boundary layer depends on the diffusion length
scale and the order of the shape mode being considered.

For the volume oscillations and the bubble translation we employ the term due to Poritsky [32] and the Levich
drag, respectively. These contributions are consistent with a velocity potential flow model. The form of these terms
is explicitly given below Eq. 29.

Since we seek conditions under which violent bubble collapse occurs, we assume the van der Waals equation of
state for the gas within the bubble [3,31,33]

pg =
(

p0 + 2σ

R0

)(
V0 − b

V − b

)γ
, (20)

in which the subscript 0 denotes ambient conditions, b is the van der Waals excluded volume (b = V0/(8.5)3) and
γ is the polytropic exponent of the gas. The bubble volume V at time t is determined by conducting an appropriate
volume integral,

∫ 2π
0

∫ π
0

∫ rs
0 r2 sin θdrdθd�, where the bubble surface is defined by (13). Thus

pg = pg0

(
R3

0 − b1

R3 − b1

)γ
− ε2 pg0γ

(
R3

0 − b1

R3 − b1

)γ ∞∑

k=2

3a2
k R

(2k + 1)(R3 − b1)
+ O(ε3), (21)

where pg0 = p0 + 2σ/R0 and b1 = 3b/(4π).
Here, we extend the expression given by Lamb [34, p. 461, Sect. 253] for the surface curvature to include O(ε2)

effects:

∇ · n̂ = 2

R
+ ε

∞∑

k=2

(k + 2)(k − 1)
ak

R2 Pk(µ)− ε2
∞∑

j=2

∞∑

k=2

(k2 + k − 1)
2a j ak

R3 Pj (µ)Pk(µ)+ O(ε3). (22)
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2.3 System of equations

In order to derive dimensionless differential equations for the bubble dynamics, we introduce the same scalings as
Spelt and Matar [3]:

[R, ak, u, t, p, E0, q] =
⎡

⎣R0 R∗, R0a∗
k ,

√
σ

ρR0
u∗,

√
ρR3

0

σ
t∗,
(
σ

R0

)
p∗, E00 E∗

0 , ε ε0 E00q∗
⎤

⎦ , (23)

where the star notation indicates a dimensionless quantity and E00 is an average electric field strength. We also
introduce the dimensionless parameters

Oh = µ̂√
ρσ R0

, Ma = 1

c∞

√
σ

ρR0
, W = ε ε0 E2

00

σ/R0
,

(24)

K =
√
ρR3

0/σ

ε ε0/κ
, Kin =

√
ρR3

0/σ

ε ε0/κin
, λ = εin/ε.

These correspond to the Ohnesorge number, the Mach number, the electric Weber number times the relative per-
mittivity of the liquid, dimensionless conductivities and the ratio of the dielectric constants, respectively.

After making use of the identities in the Appendix and equating common terms in the Legendre polynomials,
we obtain the following set of dimensionless equations where the star notation has been dropped. The volume
oscillation equation is expressed as

R R̈ + 3

2
Ṙ2 = pg − p∞ − 2

R
+ RMa

d

dt

(
pg − p∞

)− 4OhṘ

R
+ f0(t)

+ ε2

⎧
⎨

⎩
u2

3

4
+ 2

R3

∞∑

i=2

∞∑

j=2

( j2 + j − 1)ai a j C0(i, j)

⎫
⎬

⎭

+ W

{
1

6

(
2A2 − 8E0 A − E2

0

)
− ε

2a2

5R
(A − 2E0)(A − E0)

}

+ Wλ

{
1

6
(E0 + A)2 + ε(E0 + A)(2E0 + A)

2a2

5R

}
+ O(ε3). (25)

The translation equation is
(

R − 7

5
εa2

)
εu̇3 = −

(
3Ṙ − 12Ṙ

5R
εa2 − 9

5
εȧ2

)
εu3 − 18Oh

R
εu3 + f1(t)

+ ε2 4

R3

∞∑

i=2

∞∑

j=2

( j2 + j − 1)ai a j C1(i, j)

+ εW
12

5R

{
a3

7

(
A2 + 11AE0 − 8E2

0

)
− (2E0 − A)

A2

R3

}

+ εWλ
4(E0 + A)

5R

{
A2

R3 + 3a3

7
(8E0 + 5A)

}
+ O(ε3). (26)

The P2 shape-mode amplitude equation is

Rεä2 + 3Ṙεȧ2 +
[

12

R2 − R̈

]
εa2 + 8Oh

[
εȧ2

R

(
5 − 16

�

R

)
+ εa2 Ṙ

R2

(
1 + 4

�

R

)]

= −9

4
ε2u2

3 + f2(t)+ g2(t)+ ε2 6

R3

∞∑

i=2

∞∑

j=2

( j2 + j − 1)ai a j C2(i, j)
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+ 3W

{
1

3

(
5A2 − 2AE0 + 2E2

0

)
+ ε(A − 2E0)

12A3

7R5
+ ε

4a4

21R

(
5A2 + 13AE0 − 10E2

0

)

+ ε
2a2

7R

(
−13A2 + 18AE0 − 2E2

0

)}
+ 3Wλ

{
−2

3
(E0 + A)2 + ε(E0 + A)

a2

R

(
7

5
A + 4

7
E0

)

+ ε 4a4

21R
(E0 + A)(10E0 + 7A) +ε 3A3

7R5
(E0 + A)

}
+ O(ε3). (27)

The general shape-mode amplitude equation for k ≥ 3 is

Rεäk + 3Ṙεȧk +
[
(k2 − 1)(k + 2)

R2 − (k − 1)R̈

]
εak + 2Oh

R

{[
(k + 2)(2k + 1)− 2k(k + 2)2

�

R

]
εȧk

+ Ṙ

R

[
(k − 1)(k + 2)+ 2k(k + 2)(k − 1)

�

R

]
εak

}

= ε2 2(k + 1)

R3

∞∑

i=2

∞∑

j=2

( j2 + j − 1)ai a j Ck(i, j)+ fk(t)+ gk(t)

+ εW

{
(A − 2E0)

(k + 1)2(k + 2)

(2k + 3)Rk+3 Ak+1 + [A(3k − 1)− E0]
k(k + 1)Ak−1

(2k − 1)Rk+1

+
[

A2(4k − 3)+ AE0(9 + 2k)− E2
0(6 + 2k)

] (k + 1)2(k + 2)

(2k + 3)(2k + 5)

ak+2

R

+
[

A2(−7k2 − 7k + 3)+ AE0(10k2 + 10k − 6)− E2
0k(k + 1)

] 2(k + 1)

(2k − 1)(2k + 3)

ak

R

+ (1 − δ3k)
[
−(4k + 7)A2 + (7 − 2k)AE0 + 2(k − 2)E2

0

] k(k2 − 1)

(2k − 3)(2k − 1)

ak−2

R

}

+ εWλ(E0 + A)

{
(k + 1)2 Ak+1

(2k + 3)Rk+3 − 2k(k2 − 1)Ak−1

(2k − 1)Rk+1

+ ak+2

R

(k + 1)2(k + 2)

(2k + 3)(2k + 5)
[A(2k + 3)+ 2E0(k + 3)] + ak

R

[
2E0k(k + 1)2

(2k − 1)(2k + 3)
+ A(k2 − 1)(3k + 1)

2k + 1

]

+ (1 − δ3k)
ak−2

R

k(k2 − 1)

(2k − 1)(2k − 3)
[2A(2k − 1)− 2E0(k − 2)]

}
+ O(ε3); (28)

details of the determination of the electrostatic contributions to the normal-stress balance can be found in the
Appendix.

In the above equations, the terms fk(t) (k ≥ 0) and gk(t) (k ≥ 2) are given by Eqs. 2.26 and 2.27 in Doinikov [25],
respectively (allowing for the notation used within his paper), although here the O(ε2) correction to the pressure
inside the gas is that for the van der Waals model and is contained within the term pg in (25). Thus fk(t) is

fk(t) = ε2
∞∑

l=2

∞∑

m=2

{
alam

[
R̈

R
α1(k, l,m)+ Ṙ2

R2 α2(k, l,m)

]
+ α3(k, l,m)älam

+α4(k, l,m)
Ṙ

R
(ȧlam + ȧmal)+ α5(k, l,m)ȧl ȧm

}
. (29)

The coefficients α1(k, l,m)−α5(k, l,m) are given by (2.28)–(2.32) in Doinikov [25]. We do not repeat these terms
here or the expression for gk(t) again for clarity of presentation. Within (27) and (28), the contributions multiplied
by the Ohnesorge number, Oh, are the viscous shape-mode damping terms due to Brenner et al. [31]. Within these
terms � characterises the momentum boundary-layer thickness for each shape mode and is defined by � = R/2k,
k ≥ 2 [31]. The volume oscillation damping term is 4OhṘ/R, while the Levich drag is 18Ohεu3/R. The coefficients
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Ck(i, j) denote the square of the Clebsch–Gordan coefficients. The pressure inside the bubble now has the form

pg = �0

(
1 − b∗

1

R3 − b∗
1

)γ
− ε2�0γ

(
1 − b∗

1

R3 − b∗
1

)γ ∞∑

k=2

3a2
k R

(2k + 1)(R3 − b∗
1)

+ O(ε3), (30)

where �0 = p0 + 2 and b∗
1 = 1/(8.5)3.

To the order of analysis considered within this work, the term ∇S · (quS) has the form

∇S · (quS) = [∇ · (q(u − n̂(n̂ · u))
)]

S − [
n̂ · {(n̂ · ∇)(q(u − n̂(n̂ · u)))}]S

= ε
q̂

R

{

3u3 P2 −
∞∑

k=1

k(k + 1)

2k + 3

[
kak+1

Ṙ

R
− ȧk+1

]
Pk

−
∞∑

k=3

(k − 1)(k + 1)

2k − 1

[
(k − 2)ak−1

Ṙ

R
− ȧk−1

]
Pk

}

+ O(ε2), (31)

while the contribution from the second term on the right-hand side of (6) is

un · ∇q = −εq̂ Ṙ

R2

[ ∞∑

k=1

(k + 1)(k + 2)

2k + 3
ak+1 Pk −

∞∑

k=3

k(k − 1)

2k − 1
ak−1 Pk

]

+ O(ε2). (32)

Adding the contributions from (31) and (32) to the boundary condition (4) gives rise to the following dimensionless
interfacial charge-density components

˙̂q = −K (E0 − 2A)+ Kin(E0 + A)− 2Ṙ

R
q̂

+ ε
6a2

5R

[
K (E0 − A)− Kin(E0 + 2A)− 4Ṙq̂

3R

]
− ε

4q̂

5R
ȧ2 + O(ε2), (33)

ε ˙̂q2 = ε

{
K

[
6a3

7R
(2E0 − A)+ 3A2

R4

]
+ Kin

[
−6a3

7R
(2E0 + 5A)+ 2A2

R4

]
− 2Ṙ

R
q̂2

− 6Ṙ

7R2 q̂a3 − 12q̂

7R
ȧ3 − 3q̂u3

R

}
+ O(ε2), (34)

and for k ≥ 3

ε ˙̂qk = ε

{
K

[
−6A

R
ξk + (k + 1)Ak

Rk+2 + (E0 + A)
ζk

R

]

+ Kin

[
−3k A

R
ξk + k Ak

Rk+2 − (E0 + A)
ζk

R

]

−2Ṙ

R
q̂k − Ṙq̂

R2

2(k + 1)(k − 1)

2k + 3
ak+1 − q̂(k + 1)(k + 2)

R(2k + 3)
ȧk+1

−2Ṙq̂

R2

(k2 − k − 1)

2k − 1
ak−1 − q̂(k2 + 2k − 1)

(2k − 1)R
ȧk−1

}
+ O(ε2). (35)

Here ξk and ζk are expressed by

ξk = k + 1

2k + 3
ak+1 + (1 − δ2k)

k

2k − 1
ak−1, (36)

ζk = (k + 1)(k + 2)

2k + 3
ak+1 − (1 − δ2k)

k(k − 1)

2k − 1
ak−1, (37)

in which δi j is the Kronecker delta function.
In order to obtain expressions for the dimensionless coefficients A and Ak , we substitute the expansions given

by (14) and (15) in the dimensionless versions of the interfacial conditions (2) and (3), which, after making use of
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identities given in the Appendix and equating coefficients in the resultant Legendre polynomials, yields

A = 1

λ+ 2

[
−q̂ + E0(1 − λ)− ε

6a2

5R

{(
1 + 2λ

λ+ 2

)
q̂ + E0

(λ− 1)2

λ+ 2

}]
+ O(ε2),

εAk = ε
Rk+2

(k + 1)+ λk

[
−q̂k − q̂

R(λ+ 2)
{3ξk(2 + kλ)− ζk(1 − λ)} + 3E0(1 − λ)

R(λ+ 2)
{ξk(2 + kλ)− ζk}

]

+O(ε2). (38)

In deriving the above system of equations, we have assumed that W = O(ε). Consequently, we shall choose
sufficiently small values for W such that a2 remains of order ε, which is taken to be approximately equal to 0.1,
in the present study. Our equations extend the work of Doinikov [25] in order to include low-Mach-number com-
pressibility effects, surface-tension effects to quadratic order in the small-interaction terms and shape-mode viscous
damping, but have omitted the spatially varying acoustic-field contributions. We have also used a van der Waals
rather than a perfect gas equation of state to model the behaviour of the gas within the bubble. Previous work on the
dynamics of a bubble in a uniform electric field has also been constrained to the case of small ellipsoidal deformation
only. Thus, all the electric-field contributions in the translation equation (26) and the general shape-mode amplitude
equation (28) for k ≥ 3 are new. Within the volume oscillation equation (25) and the P2 shape-mode amplitude
equation (27), the electric-field terms are consistent with those presented by Spelt and Matar [3], although (27)
has been extended to include contributions from the P4 shape mode. We also observe that in the absence of any
interfacial charge density as the bubble dynamics evolves, at leading order, the electric-field contributions within

the volume oscillation and P2 shape-mode equation are 3
2 W E2

0
λ−1
λ+2 and 9W E2

0
(λ−1)2

(λ+2)2
. These respective terms are

the electric-field contributions used by Oh et al. [5] in their study of a bubble in a dielectric liquid under a uniform
electric field.

2.4 Discussion of the model equations

Here, we make tentative predictions regarding the behaviour of the bubble in various limiting cases via inspection of
the above system of nonlinear ordinary differential equations (ODEs) governing the bubble dynamics. Note that we
concentrate on the new interactions offered by the electric-field effects. Consider the case of an initially stationary,
uncharged, non-oscillating, spherical bubble. Upon switching on an electric field of magnitude E0, the bubble is
instantaneously set into volume oscillations, undergoes surface deformation with respect to the P2 shape mode, and
acquires an interfacial charge density consisting of the component q̂ provided λ > 0. The equations indicate that,
even to linear order in ε, these effects are strongly coupled. At the same time, higher-order shape modes become
excited and other charge-density components can become non-zero. In particular, if the Pk shape mode is deformed
then, in the presence of an electric field, this mode will excite the Pk+2 and the Pk−2 shape modes. Thus for an
initially stationary, spherical bubble we have that the P2 shape mode will excite the P4 shape mode which, in turn,
excites the P6 (and P2) shape mode which then excites the P8 (and P4) mode and so on. Clearly energy is transferred
to higher even shape modes via a cascade effect and no odd shape modes are excited through this set of interactions.

Numerical work for both bubbles and drops undergoing free oscillations as a result of an initial distortion in
shape [35,36] has predicted that, if this distortion is in terms of an even shape mode, other even shape modes
become excited, but odd shape modes do not; this is in agreement with the above observations. In the case of a
bubble, the equations of Doinikov [25] clearly show that, to second order in the small-interaction terms, even shape
modes only excite other even shape modes and the equations of Shaw [37] show that this also holds at third order.
Thus, one can therefore conclude that, to the order of interactions considered within this paper (and the physical
mechanisms accounted for), there appears to be no mechanism for exciting odd shape modes in the case of an
initially stationary, uncharged spherical bubble. If, instead, the bubble is initially charged, it is noted that the Pk

shape mode will become excited if either the q̂ , q̂k−1 or q̂k+1 charge-density components are non-zero.
In the work of Doinikov [25], it was noted that odd shapes modes will be excited by a moving bubble or the action

of a spatially varying acoustic pressure field. The same is expected for a spatially varying electric field, although
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this will not be demonstrated here. A further consequence of the above observations is that the application of a
spatially uniform electric field to an initially stationary, uncharged, spherical bubble will not result in translation.
Equation (26) indicates that, if we wish to move a bubble using such an electric field, the bubble must either be
deformed in terms of the P3 Legendre polynomial or have a non-zero interfacial charge-density component q̂2.
Further inspection of the equations reveals that this can be generalised to any odd shape-mode deformation or
even interfacial charge-density term. As a consequence of the modal interactions identified above, then an initial
distortion in any general odd shape mode, in turn, causes the excitement of the P3 shape mode via the cascade
effect and bubble translation ensues. The same argument applies to an initially non-zero, general even interfacial
charge-density term. This set of identified interactions provides one means by which energy can be transferred to
result in bubble translation. It is noted that modal excitement can also occur via higher-order interactions in ε, but
by their nature these interactions are expected to be less significant, except when the deformation becomes large. In
the absence of an electric field, it is well established that quadratic interactions between odd and even shape modes
can cause bubble movement [25,38,39]. It has also been shown [25,37] that an initially non-zero odd shape mode
can excite both odd and even shape modes via terms which are not coupled to an electric field.

In the case of the charge density, the ODEs indicate that the q̂k component will become non-zero if either the
Pk−1 or Pk+1 shape mode has a non-zero amplitude. Thus, for an initially stationary, uncharged spherical bubble
as the even shape modes become excited sequentially in k, this will correspondingly cause the odd number com-
ponents of interfacial charge density to become non-zero, i.e., upon excitement, the P2 shape mode will cause the
q̂3 charge-density term to become non-zero, the P4 shape mode will cause the q̂5 charge density term to become
non-zero and so on. The system of equations (25)–(28), (33)–(35), (38) indicates that, once particular shape-mode
amplitudes and charge-density components become non-zero, coupling between these terms will, of course, cause
modification. It is also clear that the volume oscillations of the bubble together with the non-electric field effects
will cause further modification.

3 Results

In this section, we present a selection of our results. The effect of electric forcing on the steady and time-dependent
solutions of Eqs. 25–28, 33–35 is examined, where attention is restricted to E0 = 1. We begin, however, with a
concise description of the numerical procedure used to carry out the computations. Note that the hat notation used
with respect to the charge-density components is suppressed for the remainder of this work. Also note that for
purposes of presentation the small parameter ε is absorbed into the appropriate perturbation terms, i.e., assume
henceforth u3 ≡ εu3; ak ≡ εak , for k ≥ 2; qk ≡ εqk for k ≥ 2, etc.

3.1 Numerical procedure

In order to determine how the bubble dynamics and charge-density components evolve in time for a given set of
parameters and initial conditions, the system of ODEs (25)–(28), (33)–(35) must be solved using numerical tech-
niques. First, attention is restricted to the first N Legendre terms only. Making use of the symbolic manipulation
package MAPLE, the truncated ODE system is then solved in the manner of Shaw [37] to obtain expressions for
R̈, u̇3, äk , q̇ and q̇k to O(ε2), where 2 ≤ k ≤ N . At this stage, the coefficients A and Ak are eliminated by employ-
ing relations (38). The resultant equations are numerically integrated using a fourth-order accurate Runge–Kutta
method. Note that prior to integration, the pertinent terms within these equations were compared with (27)–(31)
of the inviscid, incompressible free-oscillation work of Shaw [37] and were found to be consistent. We have also
ensured that the results of Spelt and Matar [3] are recovered in the appropriate limit; an explicit comparison is
given at the beginning of the transient-results section. Additional checks were performed by ensuring that the pre-
dictions of the numerical procedure are in excellent agreement with steady solutions of the nonlinear system of
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ODEs, obtained using MAPLE. A full parametric study is beyond the scope of this paper; we focus instead on three
problems involving higher shape-modes contributions.

3.2 Steady solutions

The first results considered are a set of steady-state solutions of the governing ODEs. The highly nonlinear alge-
braic equations resulting from the steady versions of (25)–(28), (33)–(35) admit a large number of solutions (which
increases with γ due to the increase in nonlinearity of the equations), and only solutions in the real domain are
considered that satisfy R > b∗

1, (|ak |, |qk |) < 0.35, for k ≥ 2. Spelt and Matar [3] identified two main solution
branches which the present analysis confirms. Increasing the truncation parameter N , i.e., the number of Legendre
terms retained, causes small modifications to these branches, although as W increases so does the size of these
modifications. A third branch was determined in the present analysis which was found to be much more sensitive
to the value of N .

In Fig. 1a and b, the effect of varying W on the lower solution branch of Spelt and Matar [3] together with the
newly identified third branch (upper set of curves in both pictures) for R and a2 are plotted for�0 = 1 and�0 = 2.
These results were generated using λ = 0.1, γ = 1 and (K , Kin) = (1, 0). It is seen that, as �0 is increased, the
third solution branch becomes admissible for an increasingly larger range of W values. At�0 = 2, a corresponding
solution is found at W = 0. This branch was found to converge to almost the same radius as the lower branch, but
all shape modes are rather large and the convergence of this branch with respect to N is slow. As also shown in
Fig. 1c, which depicts the shape-mode amplitudes for the three identified solution branches at W = 0.3,�0 = 0.75,
(K , Kin) = (4.67 × 10−3, 0), the shape-mode amplitudes associated with the upper and lower branches appear to
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Fig. 1 Steady-state bubble radius, (a), and first shape mode, (b), as a function of W for different values of �0; �0 = 1 (solid lines)
and 2 (dashed line) while λ = 0.1, γ = 1, (K , Kin) = (1, 0), Oh = 0.037 and Ma = 1.81×10−3; only the ‘lower’ and ‘third’ branches
are shown (see text). c Steady-state bubble shape-mode amplitudes as a function of mode number for the three solution branches with
W = 0.3,�0 = 0.75, λ = 0.1, γ = 1 and (K , Kin) = (4.67×10−3, 0); the squares, triangles and circles represent the ‘lower’, ‘upper’
and ‘third’ branches, respectively. All odd modes are zero, and the dashed lines in panel (c) are included for illustrative purposes
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decay approximately exponentially to zero with increasing k; those associated with the third branch, however, decay
at a distinctly slower rate. We point out here that the aspect ratio of the bubble is close to

√
2 in this case; Kushch

et al. [40] showed that, beyond this value, spherical harmonics are not convergent, and ellipsoidal harmonics should
be used instead. Note that for all the cases considered in this section, the respective amplitudes of all the odd shape
modes, together with the even charge-density components and any bubble translation were found to be zero. This
is consistent with the observations made in Sect. 2.4.

3.3 Transient solutions

We begin the discussion of our time-dependent results by comparing our predictions with those of Spelt and Matar
[3] who did not account for nonlinear interactions between the shape modes (or bubble translation). As shown in
Fig. 2, for the parameter set as indicated, the agreement is good with small discrepancies only really becoming
apparent in a2 and q3 at long times. These discrepancies are expected to grow with increasing W .

In Fig. 3, we display the evolution of the volume oscillations, the first four even shape-mode amplitudes and the
first two odd charge-density components for different values of λ. Consistent with our observations in Sect. 2.4 all
odd shape modes together with even charge-density charge components remain zero-valued, as does the bubble
velocity (not shown). The amplitude of the oscillations in R and the even shape modes increase with decreasing λ,
becoming largest in the limit of λ → 0. This is because the contrast in dielectric constants increases with decreasing
λ which promotes the electric contribution to the dynamics. This is in agreement with the results of Spelt and
Matar [3], who showed that increasing λ results in an increase in the final steady value of R. It is also evident
that an increase in λ results in a concomitant rise in the growth rate of q and q3, and q reaches a steady value,
which is in agreement with the asymptotic relation derived by Spelt and Matar [3], q ∼ −3λ/2, and is negative
since Kin/K → 0; this occurs on a much longer time scale than that needed for R and the shape modes to reach
steady state. In order to rationalise this feature, we considered (33) in the limit Kin → 0 and exploited the fact
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Fig. 2 Comparison of the predictions of the present theory with those of Spelt and Matar [3], labeled ‘SSM’ and ‘SM’, respectively,
for R, a2, q and q3, starting from R(0) = 1;�0 = 0.75, λ = 0.1, γ = 1, (K , Kin) = (4.67 × 10−3, 0) and W = 0.11. The insets show
the long-time behaviour of q and q3
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Fig. 3 The effect of varying λ on the dynamics with W = 0.11, �0 = 0.75, (K , Kin) = (4.67 × 10−3, 0), Oh = 0.037 and
Ma = 1.81 × 10−3. Also shown are the predictions of (39) for q

that Ṙ → 0 on a relatively fast time scale. We also note that we have set E0 = 1. Hence, q̇ ≈ −K (1 − 2A), with
A ≈ (−q + [1 − λ])/(λ+ 2), to leading order in ε, and thus

q ≈ −3

2
λ
(

1 − e−2K t/(2+λ)) . (39)

The agreement between the full numerical solution and the predictions of this simple analytical expression for q
is excellent, as shown in Fig. 3. Also, inspection of (39) reveals that an increase in K and a decrease in λ lead to a
faster decay towards the steady solution.

The effect of viscous damping is clearly seen in Fig. 3 as the volume oscillations, bubble translation and shape-
mode oscillations undergo significant decay. Indeed, as expected, as the order of the shape modes increases the
timescale over which the observed oscillatory motion is damped increases, with the resultant steady states being
achieved sooner.

In Fig. 4, we show contour plots of the magnitude of the electric field (with field lines superimposed), pressure
and the magnitude of the velocity field (again with field lines superimposed). These were generated with the same
parameter values as in Fig. 3 and for λ = 0. The chosen time corresponds to the early stages of re-expansion after
the first minimum in the bubble radius, R(t). The observed form of the electric field is explained by noting that for
λ = 0, no charge is induced on the bubble surface. Therefore at leading order A = 1/2 and B = 3/2 which are the
first coefficients in the respective electric field Fourier–Legendre expansions (14), (15). Note, for the field outside
the bubble, by the form of the expansion, the P1 contribution is forced towards zero along the symmetry line, on
the bubble surface. As the bubble is near the first minimum volume, then the contents are clearly shown to be under
compression relative to the surrounding water. Also, during this stage of the re-expansion, the P2 shape mode has
a higher velocity than the spherical bubble radius.

A typical charge-density distribution on the bubble surface is shown in Fig. 5, for the parameter set of Fig. 3 and
for λ = 0.01. Note, the orientation of this figure is such that the electric field is from the right to left in this case.
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Fig. 4 Contour plots of the magnitude of the electric field, pressure and magnitude of the velocity field shown in (a)–(c), respectively,
for λ = 0 and t = 2.95; the rest of the parameters are the same as those used to generate Fig. 3. Superimposed on (a) and (c) are the
corresponding field lines. The respective contour ranges are 0–1.5 in (a); −1.2 to 1 in (b); in (c) 0.002–0.036

Fig. 5 Bubble shape and charge-density plots for λ = 0.01 and t = 0.849; the rest of the parameters are the same as those used to
generate Fig. 3. The applied electric field is from right to left. a The sum of all charge-density components; b the same as (a), but not
including P1q

Although the P1 charge-density distribution dominates, deviations are significant at the left and right most parts of
the bubble.

In Fig. 6, we show the early-time dynamics of R, the first six shape modes, the displacement, x3, the translational
velocity, u3, q and the first six higher components of the interfacial charge density; this plot was generated with the
same parameters as those used in Fig. 3 except�0 = 0.22, Oh = 0.01 and the simulations began from an amplitude
of 10−4 for all the variables. Here, we have chosen a lower value of �0 deliberately since, based on parametric
studies (not shown) and the steady-state solutions shown in Fig. 1, we would expect a more rapid transition towards
a lower, steady bubble radius, and, therefore, a greater response with decreasing�0. Inspection of panels (a) and (d)
of Fig. 6 reveals that the rapid collapse of the bubble radius from R(0) ≈ 1 to near its steady value is accompanied
by bubble translation, which appears to be intimately coupled to the build-up of interfacial charge; this, in turn, is
strongly coupled to the bubble dynamics and its oscillations are synchronous with the after-bounces of the bubble.
As shown in panels (b), (c), (e) and (f) of Fig. 6, the magnitude of bubble deformation and the amplitude of the higher
components of the interfacial charge density also undergo rapid increase during the final stages of each collapse
which occurs on short time scales. We also note that the higher-order shape modes decay faster than the lower-order

123



Electrically induced bubble deformation, translation and collapse 305

0 5 10 15
0

0.5

1

1.5

t

(a)
R
250 x

3

250 u
3

0 5 10 15
−0.1

−0.05

0

0.05

a
2

10 a
4
−0.03

100 a
6
−0.06

t

(b)

0 5 10 15

−4

−2

0

2
x 10

−4

a
3

a
5
−2 10−4

a
7
−4 10−4

(c)

t

0 5 10 15
−0.03

−0.02

−0.01

0

t

(d)

q

0 5 10 15
0

1

2

3
x 10

−3

t

(e)

q
2

q
4

q
6

0 5 10 15
0

2

4

6
x 10

−3

t

(f)

q
3

q
5

q
7

0 50 100

0

0.5

1

R
x

3

u
3

q

(g)

0 50 100
0

0.005

0.01
(h)

q
2

q
4

q
6

0 50 100
−10

−5

0

5
x 10

−3 (i)

q
3

q
5

q
7

Fig. 6 Evolution of R, the first six shape modes and translational velocity, u3, shown in (a)–(c), and q as well as the first six higher
components of the interfacial charge density, (d)–(f) starting from an amplitude of 10−4 for all variables; W = 0.11, Oh = 0.01,
Ma = 0.0181, λ = 0.1 and�0 = 0.22. In (g)–(i) long-time dynamics of R, q, x3 u3 and the first six higher components of the interfacial
charge density

ones and their dynamics exhibit two separate stages: the first occurs at early times and the second coincides with
the latter stages of the first rapid collapse. The interfacial charge density also exhibits interesting dynamics: the
magnitude of q and the first six higher components exhibit local maxima which coincide with each collapse, and
the magnitude of the odd charge-density components exceeds that of the even ones; although q remains negative
throughout, the other modes are all positive.

Also shown are the long time dynamics of R, u3 and the charge-density components. Here, it is seen that q2

undergoes a rapid increase, which is followed by a rise in x3 and u3, and an increase in the magnitude of q3. The
charge density q does not exhibit a discernible change from the behaviour dictated by (39), while R remains steady
until relatively late stages of the flow when it undergoes a sharp increase. This increase in the magnitude of the
higher-order modes heralds the breakdown of the asymptotic theory. Nevertheless, this is indicative of an instability
that leads to the continual increase in the value of R.

It proves instructive to derive a simple system of equations, which can be examined more easily than the full set
derived in the previous section, in order to determine the mechanism underlying the behaviour show in Fig. 6. Guided
by the results shown in this figure, we assume that near the onset of the growth of q2, q ≈ − 3

2λ
(
1 − e−2K t/(2+λ)),

R = Rs , which corresponds to the steady value reached by the bubble radius following the early time dynamics
shown in Fig. 6a. We also assume that a2 and a3 are negligibly small (or at least enter the analysis at the next order)
and set Kin = 0. As a result, A2 ≈ −R4

s q2/(3 + 2λ) and the equation governing the dynamics of q2 reduces to

q̇2 = − 3K

(3 + 2λ)
q2 − 3q

Rs
u3. (40)
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The equation for u3 also reduces to

u̇3 = −18Oh

R2
s

u3 − 4Wq2

5(3 + 2λ)Rs

[
−3(2λ+ 3)

λ+ 2
− λ+ 3

λ+ 2
q

]
, (41)

where the reduction A ≈ (1 − λ− q)/(λ + 2) has been applied. Inspection of (40) and (41) reveals that decay in
q2 and u3 results from the first terms on the right-hand side of these equations; these are related to the conductivity
of the outer fluid and its viscosity, respectively. The second term on the right-hand side of (40) can result in growth
as Fig. 6 indicates q is negative while u3 is positive. In (41) the contribution from q couples with q2 to cause
further decay, while the remaining term on the right-hand side involving the q2 component solely causes growth.
Therefore, the key interaction is the term −3qu3/Rs in (40). Provided u3 is not damped to zero, growth in −q will
eventually cause q2 to blowup which will then trigger the blowup of the bubble velocity. At this point the theory
becomes invalid, though the indications are that strong growth in the bubble volume then occurs, followed later by
shape distortion. However, in order to confirm this a new model permitting O(1) amplitudes in u3 and q2 would be
required.

If we assume q → − 3λ
2 , i.e., the steady-state limit, then the eigenvalues for the coupled system (40), (41) are

1

2

{
(β1 + β4)±

√
(β1 + β4)2 − 4(β1β4 − β2β3)

}
, (42)

where

β1 = − 3K

3 + 2λ
, β2 = 9λE0

2R
, β3 = W

6E0(3 − λ)

5(3 + 2λ)R
, β4 = −18Oh

R2 . (43)

Hence a necessary condition for instability is

W

Oh K
>

10

λ(3 − λ)
. (44)

This condition is indeed met in the case studied in Fig. 6; we have also completed further tests on the full system
of equations, all of which confirm this condition, including cases which are stable under (44). We have verified
that for the case studied in Fig. 6 the growth rate of u3 and q2 is below that predicted by (42), as expected, given
that q has not reached its equilibrium value for the time domain shown (and these would become too large for the
analysis to be valid once it does). We have verified that the term that causes the instability (the second term on
the right-hand side of (40)), corresponds to the first term on the right-hand side of (5), i.e., the charge advection on
the bubble surface.

In summary, then, if condition (44) is met, and u3 is slightly perturbed (or a given mode which subsequently
causes u3 to become excited, as discussed in Sect. 2.4), then as q decreases gradually towards its supposed equi-
librium value, one of the eigenvalues of (42) becomes positive due to charge advection on the bubble surface. In
turn this triggers the dramatic growth in translation of the bubble and possible subsequent break-up or transition to
a new quasi-steady state.

4 Conclusions

A theoretical model has been derived for the nonlinear dynamics of a gas bubble in a low-Mach-number, weakly
viscous dielectric liquid which is being forced by a spatially uniform electric field. Representing any shape defor-
mation of the bubble by a sum of spherical harmonics together with any induced charge density, domain perturba-
tion analysis is applied with respect to the bubble-surface boundary conditions, wherein any translation or shape
deformation of the bubble is assumed small, but no restriction is imposed on the volume oscillations. The equations
presented include interactions in the perturbation terms to quadratic order that have allowed us to extend the range
of W values (ratio of electric to surface-tension stresses) for which steady-state shapes could be investigated beyond
that studied by Spelt and Matar [3]. Our analysis of the equations suggests that, unless a bubble is initially deformed
in terms of at least one odd shape mode or acquires an even component of interfacial charge density, then only even
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shape modes and odd charge-density components will be excited. This is confirmed by our numerical simulations.
The two steady-state branches identified by Spelt and Matar [3] are confirmed; increasing the number of terms
included in the spherical-harmonic expansions causes only small modifications. A third steady-state branch is also
identified which is found to be much more sensitive to the later expansions’ truncation. In the case of time-dependent
solutions, our numerical results also show that, when all shape modes and interfacial charge-density components
are excited, bubble translation occurs; this is found to be directly related to the build-up of charge at the interface.
At later stages in the dynamics, a coupling of this charge build-up and bubble translation gives rise to an instability
that leads to bubble acceleration and a sudden increase in the radius, caused by charge advection on the bubble
surface. We speculate that this may ultimately lead to bubble break-up, but caution that a more elaborate account of
viscous effects and large shape deformation may be needed in this context. Contour plots of the magnitude of the
electric field, pressure and the magnitude of the velocity within the bubble and the surrounding liquid are shown
for one example; bubble shape and charge-density plots are also given.

For future work, full numerical simulations are recommended, together with a more developed theory for the
potential bubble break-up.
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Appendix

Identities

The following set of Legendre polynomial relations have been used as a part of the derivations presented in this
paper.

P2
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3
P0 + 2

3
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dP1
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(
dP1
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Electric contributions to normal-stress balance

Here we determine the electrostatic contribution to the normal-stress balance at S, given by Eq. 9. The normal
component of the Maxwell stress, given by (12), exerted by the electric field on the bubble is

n̂ · (n̂ · M) = ε

[
(E · n̂)2 − 1

2
E · E

]

= ε

{
1

2

[(
∂ψ

∂r

)2

− 1

r2

(
∂ψ

∂θ
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− ε
2

r2

∂ψ

∂r

∂ψ

∂θ
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k=2

ak
dPk

dθ

}

, (52)

evaluated on S. For the liquid side of the interface

n̂ · (n̂ · M) = ε ε0
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The corresponding contribution from the gas side is

n̂ · (n̂ · M) = −εinε0
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